To understand the set-rest mechanism and thermal stability of $Si_{15}Te_{25}Ge_2$ (GSiT) Phase Change Memory (PCM) material

EXPERIMENTAL SETUP

SAMPLE PREPARATION

Furnace setup - Quenching Process
1. Furnace, 2-Asbestos powder, 3-Ceramic tube, 4-Motor, 5-Ampoule
 - Total weight of the constituent elements 1.5 g
 - Flattened quartz ampoule dimensions:
 - inner diameter = 5 mm
 - outer diameter = 7 mm
 - Sealed under vacuum at about 10 $^-3$ torr
 - Furnace temperature maintained at 1100 °C
 - Duration 36 h @ 10 rpm of ampoule rotation
 - Melt quenched in NaOH + Ice water mixture

ELECTRICAL SWITCHING SETUP

- I-V characteristics recorded using KEITHLEY Source-Meter (model 2410c)
- A constant current of 0-2 mA is passed through the sample and the voltage developed across the sample is measured
- Sample thickness 0.2 mm

RESULTS

ELECTRICAL SWITCHING AND THE SET-RESET PROCESS

- Memory type switching
- Threshold type switching

SET-RESET process over several triangular (SET) and a short rectangular pulse (RESET) input currents

- The SET process in the GSiT sample is achieved by applying a 2 mA triangular pulse for a sample thickness of 0.2 mm. During the ramp-up process of the SET operation, electrical switching from the OFF to ON state occurs at about 100 μA current and the SET state is reached at the 2 mA ON-state current. During the ramp-down of the applied triangular current pulse, the SET state is retained (memory behavior).
- The electrical resistance in the OFF state is $8-9$ MΩ and in the SET state is $50-100$ kΩ.
- The RESET process is accomplished by applying a rectangular current pulse of 2 mA magnitude and 10 ms width. This heats up the crystallized conducting channel rapidly and causes the local melting of the conducting channel and its subsequent re-solidification into a high resistance amorphous state.

CONCLUSIONS

- The GSiT sample can be easily set and reset over several cycles using a 2 mA triangular SET pulse and a 2 mA short rectangular RESET pulse respectively.
- The only phase responsible for the SET and RESET process is α-GeTe or ϵ-GeTe.
- GSiT sample is found to have good thermal stability.

ACKNOWLEDGEMENTS

One of the authors (SRG) gratefully acknowledges the Department of Science and Technology (DST), Govt. of India for providing financial assistance to attend the 2011 MRS Spring Meeting at San Francisco, CA, USA.